Saturday, April 30, 2011

The Circuit-Breaker,Grounding methord

The Circuit-Breaker

Circuit breakers act to limit the current in a single circuit in most household applications. Typically a single circuit is limited to 20 amperes, although breakers come in many sizes. This means that 20 amps of current will heat thebimetallic strip to bend it downward and release the spring-loaded trip-lever. Since the heating is fairly slow, another mechanism is employed to handle large surges from a short circuit. A small electromagnet consisting of wire loops around a piece of iron will pull the bimetallic strip down instantly in case of a large current surge.
Index

Practical circuit concepts
HyperPhysics***** Electricity and MagnetismR Nave
Go Back





The Ground Wire

The term "ground" refers to a connection to the earth, which acts as a reservoir of charge. A ground wire provides a conducting path to the earth which is independent of the normal current-carrying path in an electrical appliance. As a practical matter in household electric circuits, it is connected to the electrical neutral at the service panel to gaurantee a low enough resistance path to trip the circuit breaker in case of an electrical fault (see illustration below). Attached to the case of an appliance, it holds the voltage of the case at ground potential (usually taken as the zero of voltage). This protects against electric shock. The ground wire and a fuse or breaker are the standard safety devices used with standard electric circuits.

Is the ground wire necessary? The appliance will operate normally without the ground wire because it is not a part of the conducting path which supplies electricity to the appliance. In fact, if the ground wire is broken or removed, you will normally not be able to tell the difference. But if high voltage has gotten in contact with the case, there may be a shock hazard. In the absence of the ground wire, shock hazard conditions will often not cause the breaker to trip unless the circuit has a ground fault interrupter in it. Part of the role of the ground wire is to force the breaker to trip by supplying a path to ground if a "hot" wire comes in contact with the metal case of the appliance.

In the event of an electrical fault which brings dangerous high voltage to the case of an appliance, you want the circuit breaker to trip immediately to remove the hazard. If the case is grounded, a high current should flow in the appliance ground wire and trip the breaker. That's not quite as simple as it sounds - tying the ground wire to a ground electrode driven into the earth is not generally sufficient to trip the breaker, which was surprising to me. The U.S. National Electric Code Article 250 requires that the ground wires be tied back to the electrical neutral at the service panel. So in a line-to-case fault, the fault current flows through the appliance ground wire to the service panel where it joins the neutral path, flowing through the main neutral back to the center-tap of the service transformer. It then becomes part of the overall flow, driven by the service transformer as the electrical "pump", which will produce a high enough fault current to trip the breaker. In the electrical industry, this process of tying the ground wire back to the neutral of the transformer is called "bonding", and the bottom line is that for electrical safety you need to be both grounded and bonded.

This just touches the tip of the iceberg of the major subject of proper grounding and bonding of electrical systems. See Mike Holt's site for further information.

Will connection directly to the earth trip the breaker?
Appliance ground exampleWhat is a ground fault interrupter?
Index

Practical circuit concepts


Mike Holt
HyperPhysics***** Electricity and MagnetismR Nave
Go Back




Appliance Ground Wire

Three electrical connections are made to a standard appliance like a clothes washing machine. The "hot" wire carries an effective voltage of 120 volts to the appliance and the neutral serves as the normal return path. The third wire is theelectrical ground which is just connected to the metal case of the appliance.

If the hot wire shorts to the case of the appliance, the 120 volt supply will be applied to the very low resistance path through the ground wire. This will cause an extremely high current to flow and will cause the breaker or fuse to interrupt the circuit.

One problem with this arrangement is that if the ground wire is broken or disconnected, it will not be detectable from the operation of the appliance since the ground wire is not a part of the circuit for electric current flow. In that case, if the hot wire shorts to the case and the neutral wire does not, then the breaker may not trip and the entire 120 volts will be applied to the metal case of the appliance, representing a shock hazard. The ground wire of an appliance is the main protection against shock hazard.

Index

Practical circuit concepts
HyperPhysics***** Electricity and MagnetismR Nave
Go Back








Grounding to a Water Pipe

Don't try this experiment at home!

A bare 12 gauge copper wire was inserted into the hot wire side and the voltage was confirmed by meter to be 120 volts. It was touched directly to a cold water pipe and did not trip the breaker! This is a copper pipe and extends without interruption directly out into the earth.

The DC resistance from both the ground and neutral electrical terminals to that copper pipe was measured and found to be essentially zero. The digital ohmmeter measured about 1 ohm or less to the pipe. If the earth were acting as a simple ohmic conductor back to the ground at the service box, it would have conducted 120 amperes and would have immediately tripped the breaker.

Appliance ground wire
Index

Practical circuit concepts
HyperPhysics***** Electricity and MagnetismR Nave

Fuses and Breakers

Fuses and Breakers


Fuses and breakers limit the current which can flow in a circuit. The metal filament in the fuse melts and breaks the connection, whereas in a breaker, the heating effect on a bimetallic stripcauses it to bend and trip a spring-loaded switch.

Index

Practical circuit concepts
HyperPhysics***** Electricity and MagnetismR Nave
Go Back

Types of circuit breaker

Types of circuit breaker

Front panel of a 1250 A air circuit breaker manufactured by ABB. This low voltage power circuit breaker can be withdrawn from its housing for servicing. Trip characteristics are configurable via DIP switches on the front panel.

Many different classifications of circuit breakers can be made, based on their features such as voltage class, construction type, interrupting type, and structural features.

[edit]Low voltage circuit breakers

Low voltage (less than 1000 VAC) types are common in domestic, commercial and industrial application, and include:

  • MCB (Miniature Circuit Breaker)—rated current not more than 100 A. Trip characteristics normally not adjustable. Thermal or thermal-magnetic operation. Breakers illustrated above are in this category.
  • MCCB (Molded Case Circuit Breaker)—rated current up to 2500 A. Thermal or thermal-magnetic operation. Trip current may be adjustable in larger ratings.
  • Low voltage power circuit breakers can be mounted in multi-tiers in low-voltage switchboards or switchgear cabinets.

The characteristics of Low Voltage circuit breakers are given by international standards such as IEC 947. These circuit breakers are often installed in draw-out enclosures that allow removal and interchange without dismantling the switchgear.

Large low-voltage molded case and power circuit breakers may have electrical motor operators, allowing them to be tripped (opened) and closed under remote control. These may form part of an automatic transfer switch system for standby power.

Low-voltage circuit breakers are also made for direct-current (DC) applications, for example DC supplied for subway lines. Special breakers are required for direct current because the arc does not have a natural tendency to go out on each half cycle as for alternating current. A direct current circuit breaker will have blow-out coils which generate a magnetic field that rapidly stretches the arc when interrupting direct current.

Small circuit breakers are either installed directly in equipment, or are arranged in a breaker panel.

Photo of inside of a circuit breaker

The 10 ampere DIN rail-mounted thermal-magnetic miniature circuit breaker is the most common style in modern domestic consumer units and commercial electrical distribution boards throughout Europe. The design includes the following components:

  1. Actuator lever - used to manually trip and reset the circuit breaker. Also indicates the status of the circuit breaker (On or Off/tripped). Most breakers are designed so they can still trip even if the lever is held or locked in the "on" position. This is sometimes referred to as "free trip" or "positive trip" operation.
  2. Actuator mechanism - forces the contacts together or apart.
  3. Contacts - Allow current when touching and break the current when moved apart.
  4. Terminals
  5. Bimetallic strip.
  6. Calibration screw - allows the manufacturer to precisely adjust the trip current of the device after assembly.
  7. Solenoid
  8. Arc divider/extinguisher

[edit]Magnetic circuit breaker

Magnetic circuit breakers use a solenoid (electromagnet) whose pulling force increases with the current. Certain designs utilize electromagnetic forces in addition to those of the solenoid. The circuit breaker contacts are held closed by a latch. As the current in the solenoid increases beyond the rating of the circuit breaker, the solenoid's pull releases the latch which then allows the contacts to open by spring action. Some types of magnetic breakers incorporate a hydraulic time delay feature using a viscous fluid. The core is restrained by a spring until the current exceeds the breaker rating. During an overload, the speed of the solenoid motion is restricted by the fluid. The delay permits brief current surges beyond normal running current for motor starting, energizing equipment, etc. Short circuit currents provide sufficient solenoid force to release the latch regardless of core position thus bypassing the delay feature. Ambient temperature affects the time delay but does not affect the current rating of a magnetic breaker.

[edit]Thermal magnetic circuit breaker

Thermal magnetic circuit breakers, which are the type found in most distribution boards, incorporate both techniques with the electromagnet responding instantaneously to large surges in current (short circuits) and the bimetallic strip responding to less extreme but longer-term over-current conditions. The thermal portion of the circuit breaker provides an "inverse time" response feature which provides faster or slower response for larger or smaller over currents respectively.

[edit]Common trip breakers

Three pole common trip breaker for supplying a three-phase device. This breaker has a 2 A rating

When supplying a branch circuit with more than one live conductor, each live conductor must be protected by a breaker pole. To ensure that all live conductors are interrupted when any pole trips, a "common trip" breaker must be used. These may either contain two or three tripping mechanisms within one case, or for small breakers, may externally tie the poles together via their operating handles. Two pole common trip breakers are common on 120/240 volt systems where 240 volt loads (including major appliances or further distribution boards) span the two live wires. Three-pole common trip breakers are typically used to supply three-phase electric power to large motors or further distribution boards.

Two and four pole breakers are used when there is a need to disconnect the neutral wire, to be sure that no current can flow back through the neutral wire from other loads connected to the same network when people need to touch the wires for maintenance. Separate circuit breakers must never be used for disconnecting live and neutral, because if the neutral gets disconnected while the live conductor stays connected, a dangerous condition arises: the circuit will appear de-energized (appliances will not work), but wires will stay live and RCDs will not trip if someone touches the live wire (because RCDs need power to trip). This is why only common trip breakers must be used when switching of the neutral wire is needed.

[edit]Medium-voltage circuit breakers

Medium-voltage circuit breakers rated between 1 and 72 kV may be assembled into metal-enclosed switchgear line ups for indoor use, or may be individual components installed outdoors in a substation. Air-break circuit breakers replaced oil-filled units for indoor applications, but are now themselves being replaced by vacuum circuit breakers (up to about 35 kV). Like the high voltage circuit breakers described below, these are also operated by current sensing protective relays operated through current transformers. The characteristics of MV breakers are given by international standards such as IEC 62271. Medium-voltage circuit breakers nearly always use separate current sensors and protective relays, instead of relying on built-in thermal or magnetic overcurrent sensors.

Medium-voltage circuit breakers can be classified by the medium used to extinguish the arc:

  • Vacuum circuit breaker—With rated current up to 3000 A, these breakers interrupt the current by creating and extinguishing the arc in a vacuum container. These are generally applied for voltages up to about 35,000 V,[4] which corresponds roughly to the medium-voltage range of power systems. Vacuum circuit breakers tend to have longer life expectancies between overhaul than do air circuit breakers.
  • Air circuit breaker—Rated current up to 10,000 A. Trip characteristics are often fully adjustable including configurable trip thresholds and delays. Usually electronically controlled, though some models are microprocessor controlled via an integral electronic trip unit. Often used for main power distribution in large industrial plant, where the breakers are arranged in draw-out enclosures for ease of maintenance.
  • SF6 circuit breakers extinguish the arc in a chamber filled with sulfur hexafluoride gas.

Medium-voltage circuit breakers may be connected into the circuit by bolted connections to bus bars or wires, especially in outdoor switchyards. Medium-voltage circuit breakers in switchgear line-ups are often built with draw-out construction, allowing the breaker to be removed without disturbing the power circuit connections, using a motor-operated or hand-cranked mechanism to separate the breaker from its enclosure.

[edit]High-voltage circuit breakers

Russian 110 kV oil circuit breaker
115 kV bulk oil circuit breaker
400 kV SF6 live tank circuit breakers

Electrical power transmission networks are protected and controlled by high-voltage breakers. The definition of high voltage varies but in power transmission work is usually thought to be 72.5 kV or higher, according to a recent definition by the International Electrotechnical Commission (IEC). High-voltage breakers are nearly alwayssolenoid-operated, with current sensing protective relays operated through current transformers. In substations the protective relay scheme can be complex, protecting equipment and buses from various types of overload or ground/earth fault.

High-voltage breakers are broadly classified by the medium used to extinguish the arc.

  • Bulk oil
  • Minimum oil
  • Air blast
  • Vacuum
  • SF6

Some of the manufacturers are ABB, GE (General Electric) , Tavrida Electric, Alstom, Mitsubishi Electric, Pennsylvania Breaker, Siemens, Toshiba, Končar HVS, BHEL, CGL, Square D (Schneider Electric).

Due to environmental and cost concerns over insulating oil spills, most new breakers use SF6 gas to quench the arc.

Circuit breakers can be classified as live tank, where the enclosure that contains the breaking mechanism is at line potential, or dead tank with the enclosure at earth potential. High-voltage AC circuit breakers are routinely available with ratings up to 765 kV. 1200KV breakers are likely to come into market very soon.

High-voltage circuit breakers used on transmission systems may be arranged to allow a single pole of a three-phase line to trip, instead of tripping all three poles; for some classes of faults this improves the system stability and availability.

[edit]Sulfur hexafluoride (SF6) high-voltage circuit-breakers

A sulfur hexafluoride circuit breaker uses contacts surrounded by sulfur hexafluoride gas to quench the arc. They are most often used for transmission-level voltages and may be incorporated into compact gas-insulated switchgear. In cold climates, supplemental heating or de-rating of the circuit breakers may be required due to liquefaction of the SF6 gas.

[edit]

External link for electrical

External links

General

inductor calculator

Turns
Diameter
Length
Depth
Units:

Calculate




Toroid-winding calculator
The inductance formula above requires units in inches.

To calculate the inductance of a single-layer, air-core coil:
1. Select the measurement units (inches or centimeters).
2. Enter the number of turns (windings).
3. Enter the coil diameter (form diameter + wire diameter - see diagram).
4. Enter the coil length (distance from first to last winding - see diagram).
5. Click Calculate.

pictures of inductors

Page 2